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1. INTRODUCTION 

An accurate estimate of uncertainty is an important 
component in any risk assessment. With the correct 
uncertainty (or, more precisely, the event likelihood that 
can be calculated from it), decisions can better be made 
to minimize expected loss. In some applications, such 
as in atmospheric transport and dispersion (AT&D) 
forecasts of a biological or chemical release, this can 
mean minimizing expected casualties. 

One of the biggest contributors to AT&D forecast 
uncertainty is the uncertainty in the meteorological 
(MET) forcing such as the wind field (Rao 2005). Since 
AT&D models often use the output from numerical 
weather prediction (NWP) models to provide the MET 
information, accurate estimates of the uncertainty in 
those mean wind forecasts contribute to the uncertainty 
in the resulting AT&D forecast. The Second-order 
Closure Integrated Puff (SCIPUFF, Sykes et al. 2006) 
model incorporates uncertainty in the input mean winds 
via the variance of each wind component (zonal, u, and 
meridional, v) and the covariance of the two 

components. 
A common method for estimating the uncertainty in 

NWP forecasts is the use of an ensemble of forecasts, 
with multiple forecasts produced using a variety of initial 
/ lateral boundary conditions and model physics / 
parameterizations. The goal of using MET ensembles is 
to span the possible outcomes given the uncertainties in 
the initial state and modeling system (Leith 1974). 

While ensemble forecasting is a step toward 
estimating the uncertainty of NWP forecasts, the size of 
operational MET ensembles is insufficient to fully 
represent the probability density function (PDF) of 
possible forecasts. An ensemble capable of doing so is 
impractical with current computing resources. Therefore, 
any MET ensemble provides a sampling of the full 
forecast PDF and any measures of the uncertainty from 
the ensemble (such as variance) should be evaluated 
for applicability and calibrated if necessary. 

Kolczynski et al (2009) introduced the Linear 
Variance Calibration (LVC) as one potential method of 
calibration and demonstrated its impact on one AT&D  
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forecast case study. While that case study 
demonstrated both a qualitative and a quantitative 
improvement in the mean concentration forecast, a 
large sample is needed in order to properly evaluate the 
effectiveness of calibration on the reliability of the AT&D 
forecasts. 

This study uses a sample of 112 24-h forecasts 
spread over an eight-month period from a joint NWP-
SCIPUFF testbed to evaluate the impact of LVC on 
forecasts by the AT&D model SCIPUFF. An 
independent SCIPUFF simulation based upon a high-
resolution NWP dynamic analysis is used as verification. 
Section 2 summarizes the Linear Variance Calibration 
and evaluation methods used in this study. Section 3 
provides the details of the MET/SCIPUFF testbed and 
the sampling methodology used. The performance of 
SCIPUFF AT&D forecasts using both uncalibrated and 
calibrated wind variances are then evaluated in section 
4. Conclusions and future work are presented in section 
5. 

 
2. METHODOLOGY 

a. Linear Variance Calibration 
 
The LVC used here is similar to that introduced in 

Kolczynski et al. (2009). The LVC is determined by 
computing a linear regression between the variance of 
the ensemble and the variance in the errors of the MET 
forecasts. Since there is only one error available for any 
particular forecast, forecasts with similar ensemble 
variances are grouped together, and the error variance 
is computed on the sample with similar ensemble 
variances. 

The sample variance,     
 , of the  

th
 forecast point is 

calculated from the ensemble members as usual: 
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where   is the ensemble size,     is the forecast value 

for the  
th 

ensemble member, and the overbar denotes 

the sample mean. The error of the ensemble mean,   , 
compared to the observed verification value,    , is also 

calculated: 
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Equations (1) and (2) provide a series of ensemble 
variance-error pairs, one for each forecast   within a 

region during some specified training period preceding 
the forecast. These pairs are then ordered based on 
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their ensemble variance and grouped into equally 
populated bins containing   pairs each. The ensemble 

variances within each bin are averaged to get a 

representative ensemble variance of the bin    
 
       : 
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Most importantly, the grouping allows us to compute an 

estimated actual error variance,    
 
       , for the bin: 
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where     is the average error in bin  . With these 

variance pairs, we use linear regression of    
 
        

depending on    
 
        to produce estimates of the slope,    , 

and the y-intercept,    . 

 
b. Evaluation Tools 

 
There are two primary tools that are used in our 

evaluation of the SCIPUFF forecasts: the reliability 
diagram and the cumulative rank probability score 
(CRPS). Our calibration technique focuses on improving 
the reliability of the MET winds that drive SCIPUFF, and 
thus it is logical to assess the reliability of the resulting 
SCIPUFF forecasts. CRPS is chosen as an evaluation 
method that combines all aspects (i.e.., reliability, 
resolution and observation uncertainty) of probabilistic 
forecast verification into a single measure. 

A reliability diagram is constructed by plotting the 
predicted probability of a certain event occurring on the 
abscissa against the rate at which the event actually 
occurred on the ordinate. Forecasts with a similar 
probability of the event are grouped together to provide 
the sample for the verification rate. For example, with 
5% bins, all forecasts having between a 0% and 5% 
chance of occurrence would be averaged and compared 
against the actual occurrence rate for those forecasts. 

A perfectly reliable forecast will have the event occur 
as often as it is predicted to occur (e.g., the event will 
occur 50% of the time that it is predicted to occur 50% 
of the time). Forecasts plotted above the perfect 
reliability (y=x) line are under-confident, as the event 
occurs more often than is forecasted, and forecasts 
below the perfect reliability line are over-confident, as 
the event occurs less frequently than predicted. A 
forecast with a horizontal line is said to have no 
resolution, as events forecasted to occur at different 

frequencies occur at the same rate regardless of the 
forecast. A more complete treatment of reliability 
diagrams is available in Wilks (2006). 

To summarize the reliability into a single metric that 
can be easily compared between different experiments, 
we also compute the mean absolute reliability error 
(MARE) for the reliability curve. The MARE is simply the 
absolute difference between the observed frequency 
and the predicted frequency, averaged across each 
probability bin with at least one forecast. Lower scores 
are better, and zero indicates perfect reliability. 

To assess the overall performance of the SCIPUFF 
forecasts, we use the CRPS. The CRPS is a strictly 

proper score (Gneiting and Raftery 2007) that evaluates 
a probabilistic forecast based on the degree to which 
the forecast cumulative distribution function (CDF) 
deviates from the CDF of the verification. A scoring rule 
is strictly proper if it is uniquely optimized by making a 
forecast with the same distribution as that from which 
the verification is drawn. The CDF of the verification is 
generally a step-function at the observed value, but this 
is not the case for this study due to the nature of our 
verification. Because the CDF is used in the score, all 
aspects of the probabilistic forecast (resolution, 
reliability and observation uncertainty) contribute to the 
CRPS. The exact calculation of the CRPS is given by: 
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where       is the CDF of the forecast at value   and 

      is the CDF of the verification at value  . The 

CRPS of all forecasts is averaged to provide an overall 
score for the forecast region and period. Values are 
always positive, with lower values indicating a better 
forecast. 
 
3. EXPERIMENTAL DESIGN 

a. MET-SCIPUFF Testbed 

 
The testbed period extends from 1 November 2009 

through 7 July 2010. The NWP forecasts used for the 
NWP-SCIPUFF testbed are obtained from the National 
Centers for Environmental Protection Short-Range 
Ensemble Forecast (SREF) system. During this period, 
all 21 SREF members are available on a 32-km grid 
(NCEP grid 221) that covers North America. Forecasts 
are available every three hours and we use the SREF 
initialized at 0900 UTC. 

The LVC uses the North American Regional 
Reanalysis (NARR) as the verification. These analyses 
are available on the same spatial grid as the SREF. 
Calibration is calculated separately for the two wind 
components (u and v) based on the 10-m above ground 
level forecasts, and verification is performed for the 14 
days preceding the forecast at each grid location. The 
covariance of u and v is adjusted to maintain a constant 
correlation through the calibration process. A new 
calibration is calculated for each three-hour forecast 
period. 

SCIPUFF forecasts begin at 0300 UTC using the 
ensemble mean of the SREF forecasts initialized at 
0900 UTC the previous day. Two different wind variance 
experiments are included. The first experiment, Uncal, 
uses the uncalibrated wind variance from the ensemble. 
The second experiment, LVC_09z, uses wind variances 
calibrated using LVC. 

The MET information driving the SCIPUFF 
verification is provided by a 4-km dynamic analysis 
using the PSU/NCAR MM5 model and four-dimensional 
data assimilation (FDDA). Because MET data are 
assimilated throughout the simulation, this method 
produces a very realistic estimate of the actual state of 
the atmosphere for air-chemistry / AT&D model 
applications (e.g., Tanikulu et al. 2000, Deng et al. 
2004). The dynamic analysis is allowed 12 h to spin-up 
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and assimilate observations before being used for the 
SCIPUFF verification. 

Both the SCIPUFF forecasts and the SCIPUFF 
verification simulate the instantaneous release of a 
passive tracer from State College, PA beginning at 0300 
UTC (2200 LST). For the SCIPUFF verification 
simulation, the tracer is allowed to disperse for 24 h, 
and SCIPUFF output is available hourly. This means 
that SREF forecasts of 18 - 42 h are used to drive the 
SCIPUFF predictions. SCIPUFF forecasts at 4, 6, 12, 18 
and 24 h after release are evaluated. 
 
b. Sampler Grid 

 
For most of our evaluations we use a uniformly 

spaced grid of sampler locations. All samplers are 
located at ground level with a spacing of 0.05°×0.05° 
within the region bounded by 80.6° W, 69.7°W, 36.5°N 
and 45.1°N. SCIPUFF forecasts, providing both a mean 
value and a variance based on a clipped normal 
distribution, allow for full probabilistic predictions at each 
location. Both concentration and surface dosage 
(integrated concentration) predictions are available for 
each sampler point. 

 
c. Adaptive Grid 

 
In addition to the sampler grid, for dosage reliability 

we also consider results on an adaptive grid (Sykes 
2006). The adaptive grid location and spacing of the 
points depend on the structure of the dosage field. 
Regions where surface dosage has high spatial 
variability have higher resolution than areas with little 
spatial variability. Results using the adaptive grid are 
weighted by the area that each sample represents. In 
the reliability diagram using the adaptive grid, the 
secondary axis indicates the total area represented by 
forecasts within the bin instead of the number of unique 
forecasts. 

 
4. RESULTS 

Figure 1 shows the reliability diagram for 4-h 
concentration thresholds of 10

-14
 kg·m

-3
 (blue), 10

-12
 

kg·m
-3

 (green), and 10
-10

 kg·m
-3

 (red) on the uniform 
sampler grid.  The secondary axis indicates the number 
of unique forecasts that contributed to each probability 
bin. Forecasts using uncalibrated wind variances (dotted 
lines, with open bars indicating unique forecasts) for the 
lower two concentration thresholds are under-confident 
below 5%, and then they are over-confident in their 
higher probability forecasts, with little resolution or even 
a negative correlation between forecast probability and 
observed probability. However, when LVC is applied to 
the wind variance used by SCIPUFF (solid lines, filled 
bars), these forecasts are more reliable (the line is 
located closer to the black-dashed perfect reliability 
line). At the highest threshold shown, both uncalibrated 
and calibrated forecasts are generally over-confident at 
all probability levels. 

Note that the thresholds are spaced two orders of 
magnitude apart, so that the highest threshold is 10000 

times larger than the smallest. Even with this two orders 
of magnitude separation, the reliability of the two lowest 
thresholds is very similar, both for the uncalibrated and 
the calibrated concentration forecasts. Experimentation 
shows that this is a common attribute: the reliability is 
only sensitive to the threshold near the upper limit of 
concentrations. Thresholds in between the two lowest 
thresholds shown, as well as those below, all give 
similar reliability results. Thresholds a bit higher than the 
highest threshold shown have few or no forecasts with 
probabilities above 1%, making a reliability analysis 
meaningless. 

Finally, it can be seen that the probability where the 
forecasts lose resolution for all experiments is about the 
same probability where the number of unique forecasts 
contributing to the bin falls below 20. 

At 12 h (Fig. 2), results are similar to those at 4 h. 
The lower two concentration thresholds shown at this 
time, 10

-16
 kg·m

-3
 (blue) and 10

-14
 kg·m

-3
 (green), exhibit 

similar reliabilities for both the uncalibrated and 
calibrated experiments, as do the lower concentrations 
at 4 h. Uncalibrated forecasts are under-confident for all 
three thresholds at lower predicted probabilities. At 
higher predicted probabilities, the uncalibrated forecasts 
become over-confident and lose resolution about where 
the number of unique forecasts falls below 20, just as 
with the 4-h reliabilities. Applying calibration to the wind 
variances results in generally more reliable forecasts, 
with forecasts that are less under-confident at lower 
probabilities and forecasts that are less over-confident 
at upper probabilities. 

The MARE for five different forecast lead times (4, 6, 
12, 18 and 24 h) and three different thresholds are 
shown in Fig. 3. The MARE for the calibrated forecasts, 
shown in teal, are better than those for the uncalibrated 
forecasts (black) at every lead time / concentration 
threshold studied except one. This demonstrates that 
calibration is improving the reliability of concentration 
forecasts throughout the SCIPUFF forecast. Since our 
qualitative evaluation indicates sensitivity to the number 
of unique forecasts included in each bin, we also 
calculated the MARE using only bins to which at least 
20 different forecasts contributed. These results are 
shown in Fig. 4. Even limiting MARE to include only bins 
with 20 different forecasts, the calibrated forecasts have 
lower MAREs than the uncalibrated forecasts. 

Calibration also provides improvement in the CRPS 
of concentration forecasts at all five of the forecast lead 
times studied (Fig. 5). These improved CRPSs are 
evidence that the improvement in the reliability is 
improving the overall probabilistic concentration 
forecast. 

The reliability of the surface dosage forecasts also 
improves when calibration is applied to the wind 
variances. Figure 6 shows the reliability for three 
dosage thresholds of 10

-11
 kg·s·m

-3 
(blue), 10

-9
 kg·s·m

-3 

(green), and 10
-7

 kg·m
-3

 (red) for 4-h forecasts. As seen 
with concentration forecast reliability, dosage reliabilities 
for thresholds below the highest relevant thresholds are 
similar, as evidenced by the similar behavior in the 
lower two thresholds in Fig. 6. At the lower predicted 
probabilities, uncalibrated forecasts of all three dosage 
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thresholds shown are under-confident. At higher 
predicted probabilities, uncalibrated forecasts are over-
confident for all three dosage thresholds. Calibration 
improves the reliability in both of these regions, resulting 
in forecasts that are less under-confident at lower 
probabilities and forecasts that are less over-confident 
at higher probabilities. 

The MARE statistics presented in Fig. 7 show that 
this improvement in dosage reliability on the regular 
sampler grid appears to be reduced and reversed as 
forecast lead time increases. The MARE deterioration 
occurs for calibrated forecasts at higher dosage 
thresholds first, and then it spreads to lower thresholds 
as lead time increases further. By comparison, the 
surface dosage reliability at 24 h calculated using the 
adaptive grid at higher dosages (Fig. 8) shows 
qualitative improvement. It is currently unclear why 
calibration should degrade some of the sampler grid 
surface dosage results when the sampler grid 
concentration forecasts are almost universally improved 
in the same statistics when using calibration. It is 
reassuring that the adaptive grid results in Fig. 8 show 
qualitative improvement when using calibration for high 
dosages at 24 h. Further investigation into the sampler 
grid dosage results is needed. 

 
5. CONCLUSIONS 

This study evaluates the impact of applying Linear 
Variance Calibration (LVC) to the MET input wind 
variances on resulting probabilistic atmospheric 
transport and dispersion (AT&D) forecasts using the 
SCIPUFF model. This goal is accomplished by using a 
joint MET / SCIPUFF testbed where SCIPUFF forecasts 
using MET ensemble forecasts as input are compared 
to SCIPUFF simulations driven by a high-resolution 
MET dynamic analysis throughout the period. 

It is demonstrated that LVC improves probabilistic 
forecasts of concentration on a fixed sampler grid at 4 h, 
6h, 12 h and 24 h compared to similar forecasts using 
uncalibrated wind variances, as measured by both the 
reliability at several concentration thresholds and the 
cumulative rank probability score (CRPS).  

Surface dosage results on the fixed sampler grid 
show mixed results for the effect of LVC while surface 
dosage reliability calculated on an adaptive grid that  
adjusts spatial resolution on the dosage field shows 
qualitative improvement at 24 h. 
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Figure 1 — Comparison of reliability of 04-h concentration forecasts for various thresholds using a fixed sampler grid 
with resolution of 0.05° × 0.05° divided into 1% bins for concentration thresholds of 10

-14
 kg·m

-3
 (blue), 10

-12
 kg·m

-3
 

(green) and 10
-10

 kg·m
-3

 (red). Dotted lines indicate the reliability of the forecasts using uncalibrated wind variances. 
Solid lines indicate the reliability of the forecasts using calibrated wind variances. The dashed black line indicates 
perfect reliability. Bar graphs on secondary vertical axis (right) indicate the number of unique forecasts contributing to 
the probability bin, with unfilled bars corresponding to uncalibrated forecasts and filled bars corresponding to 
calibrated forecasts. 
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Figure 2 — As in Fig. 1, but at 12 h using concentration thresholds of 10

-16
 kg·m

-3
 (blue), 10

-14
 kg·m

-3
 (green), and 10

-

12
 kg·m

-3
 (red). 
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Figure 3 — Mean absolute reliability error (MARE) in the forecast reliability of forecasts at five different forecast lead 
times using three concentration thresholds (as indicated along the x-axis in kg·m-3). Black bars indicate the MARE of 
the uncalibrated forecasts; teal bars denote the MARE of the calibrated forecast. 
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Figure 4 — As in Fig. 3, but computed using only bins with at least twenty different forecasts contributing. 
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Figure 5 — Cumulative rank probability score (CRPS) of concentration forecasts at five different forecast lead times. 
Black bars indicate CRPS for forecasts using uncalibrated wind variances; teal bars indicate CRPS for forecasts 
using calibrated wind variances. 
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Figure 6 — As in Fig. 1, except for 4-h surface dosage at thresholds of 10

-11
 kg·s·m

-3
(blue), 10

-9
 kg·s ·m

-3 
(green) and 

10
-7

 kg·m
-3

 (red). 
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Figure 7 — As in Fig. 4, but for surface dosage forecasts. Thresholds along the x-axis have units of kg·s·m

-3
. 
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Figure 8 — Comparison of reliability of 24-h surface dosage forecasts for various thresholds using the SCIPUFF 
adaptive grid, weighted by area in 5% bins at surface dosages of 10

-6
 kg·s·m

-3
 (blue), 10

-5
 kg·s·m

-3
 (green), and 10

-4
 

kg·s·m
-3

 (red). Dotted lines indicate the reliability of the forecasts using uncalibrated wind variances. Solid lines 
indicate the reliability of the forecasts using calibrated wind variances. The dashed black line indicates perfect 
reliability. Bar graphs on secondary vertical axis (right) indicate the total area in each forecast probability [log scale]. 
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